Atomic Layer Epitaxy : a New Tool for Novel Modulated Semiconductor Structures

نویسندگان

  • A. Usui
  • H. Watanabe
چکیده

A novel growth techn ique f o r 111-V compounds, atomic l a y e r epi taxy(ALE1, i s presented as hav ing severa l advantages over such conven t i ona l growth methods as MBE, MOCVD and VPE. I n ALE, a s e l f l i m i t i n g growth mechanism works q u i t e e f f e c t i v e l y . Th i s mechanism makes i t p o s s i b l e t o grow l a y e r s a c c u r a t e l y i n monolayer u n i t s . Exper imenta l r e s u l t s show t h a t ALE growth u s i n g c h l o r i d e source gases, such as GaCl and InC1, r e t a i n s monolayer growth c h a r a c t e r i s t i c s over a wide range o f growth cond i t i ons . The p resen t method i s s u c c e s s f u l l y a p p l i e d t o s e l e c t i v e growth. Monolayer -un i t growth t akes p lace independent o f t h e r a t i o o f window and masked r e g i o n areas, and exce l l e n t s e l e c t i v i t y i S accomplished. Atomic-p1 ane dop ing u s i n g Se as an i m p u r i t y i s demonstrated. F i n a l l y , de l ta -doped FET f a b r i c a t i o n u s i n g Se a tomic-p lane dop ing i s presented as t h e f i r s t ALE dev i ce a p p l i c a t i o n . The measured transconductance o f t h e de l ta -doped FET w i t h a 0.5 vm ga te i s 215 mS/mm and i s comparable t o t h a t ob ta ined f rom MBE-grown de l t a -doped (S i ) FET. I n t e r e s t i n g r e s u l t s _obta ined w i t h ALE u s i n g me ta lo rgan i c compounds as source gases o f group I 1 1 elements a r e a l s o reviewed. 1. I n t r o d u c t i o n I n o rde r t o grow s u p e r l a t t i c e s and modula t ion s t r u c t u r e s f o r va r i ous novel 111-V compound dev ices , growth methods must s a t i s f y va r i ous requirements, of which p r e c i s e grown t h i c k n e s s c o n t r o l w i t h atomic o r mo lecu la r l a y e r accuracy i s a bas i c requ i rement . Molecu lar beam ep i t a x y (MBE) and me ta lo rgan i c chemical Vapor deposi tion(M0CVD) have been developed r e c e n t l y and a r e v e r y u s e f u l t o o l s f o r t h e above requ i rements . Grown th i ckness can be c o n t r o l l e d p r e c i s e l y i n angstrom o r monolayer u n i t s , w i t h adjustment o f growth r a t e (1,2) and use o f t h e RHEED o s c i l l a t i o n techn ique (3,4) i n t h e vacuum chamber. These methods, however, r e q u i r e Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987503 C5-22 JOURNAL DE PHYSIQUE v e r y s t r i c t c o n t r o l o f growth cond i t i ons , such as temperature, f l o w r a t e s and growth t ime, a l l o f which i n f l u e n c e g r e a t l y t h e growth r a t e . Atomic l a y e r epi taxy(ALE1, which was proposed o r i g i n a l l y by T. Sun to la f o r 11-V1 compounds ( 5 ) and has been developed by severa l o t h e r researchers f o r 111-V compounds (6-11) has g r e a t p o t e n t i a l as a new growth t o o l . Th i s method i s based on a new concept f o r s e p a r a t e l y d e p o s i t i n g each mono-atomic p lane o f t h e compound. A l though ALE resea rch i s i n a v e r y p r e l i m i n a r y s tage i n comparison w i t h o t h e r growth methods, we a r e ab le t o show severa l advantages over conven t i ona l methods. The p resen t paper desc r i bes i t s e x c e l l e n t monolayer c o n t r o l l a b i l i t y , w i t h a s e l f l i m i t i n g growth mechanism, s e l e c t i v e growth, a tomic-p lane doping, and a p p l i c a t i o n t o de l ta -doped f i e l d e f f e c t t r a n s i s t o r s , The r e s u l t s o f these f o u r may show t h e f e a s i b i l i t y o f ALE f o r t h e f a b r i c a t i o n o f va r i ous s o p h i s t i c a t e d dev ices i n t h e f u t u r e . The au tho rs a l s o desc r i be here a c t i v i t i e s r e p o r t e d i n t h i s f i e l d t o date. 2. Growth Procedure i n ALE I n conven t i ona l e p i t a x i a l growth methods, components making up t h e compound a r e u s u a l l y supp l i ed s imu l taneous l y t o t h e s u b s t r a t e reg ion . I n ALE, on t h e o t h e r hand, source gases f o r group I 1 1 and group V e lements a r e t ime -sepa ra te l y brought i n t o t h e s u b s t r a t e reg ion . As an example, t h e ALE growth process f o r GaAs, u s i n g GaCl and As , i s shown i n f i g . 1. There a re f o u r bas i c steps. The f i r s t s t e p ( a ) i s an ad$o rp t i on o f t h e GaCl supp l i ed t o t h e s u b s t r a t e sur face. I n t h e nex t s tep (b ) , t h e remain ing GaCl i n t h e gas phase i s purged o u t of t h e s u b s t r a t e reg ion . A f t e r s u f f i c i e n t pu rg ing has been c a r r i e d out , an a rsen i c source gas, such as AsH3 i s s u p p l i e d i n t o t h e s u b s t r a t e r e g i o n ( c ) , where a r e a c t i o n between t h e adsorbed GaCl and a rsen i c source gas occurs t o f o rm a GaAs l a y e r by r e l e a s i n g HC1. Unreacted a rsen i c compound gas and by-product gas a r e bo th them purged f rom t h e s u b s t r a t e r e g i o n (d ) . Thus, a new GaAs l a y e r i s formed on t h e subs t ra te . We used an atmospher ic mult i -growth-chamber r e a c t o r hav ing a c h l o r i d e gas chamber and a h y d r i d e gas chamber (9 ) . The c h l o r i d e gas chamber c o n t a i n s Ga and/or I n meta l sources upstream, and HC1 gas i s s u p p l i e d over t hese meta ls t o f o rm GaCl and/or I n c l . Hydr ide gases o f ASH and PH a r e i n t roduced i n t o t h e hyd r i de gas chamber. The s u b s t r a t e was t r a n s f e r g e d m e c h h i c a l l y between two d i f f e r e n t chambers. I t was exposed t y p i c a l l y t o GaCl f o r 6 seconds 'and t o a rsen i c f o r 10 seconds. One ALE c y c l e , s tep (a ) t o s t e p ( d ) i n F i g . 1, was completed i n about 45 seconds. ALE growth has been a l s o s t u d i e d w i t h meta lorgan ic (M0) compounds, such as t r i m e t h y l g a l lium(TMG1 o r t r i e t h y l g a l l ium(TEG) i n s t e a d . o f GaCl (6-8,10,11 l . The growth process i s b a s i c a l l y s i m i l a r t o t h a t i n Fig.1, a l t hough t h e decomposi t ion o f MO source gases takes p l a c e i n t h e v i c i n i t y o f t h e s u b s t r a t e and/or on t h e su r face o f t h e subs t ra te , and such Ga spec ies as Ga(CH3Ix (x=0-2) a r e thought t o d e p o s i t and form an adso rp t i on l a y e r . 3. S e l f l i m i t i n g Growth i n ALE I n f i g . 2, we summarize t h e ALE GaAs growth so f a r repo r ted , f r om t h e v iewpo in t o f t h e grown t h i c k n e s s c o n t r o l l a b i l i t y . The v e r t i c a l a x i s i n d i c a t e s t h e grown th i ckness p e r one ALE cyc le , and t h e h o r i z o n t a l a x i s rep resen ts t h e growth temperature. I f t h e adso rp t i on o r d e p o s i t i o n o f Ga spec ies (GaC1, Ga(CH X=0-2) t e rm ina tes comp le te l y i t h one monolayer, t h e grown th i ckness pe r ALE c y s l 6 shou ld then be equal t o 2.83 1 f o r a GaAs(100) subs t ra te . It i s c l e a r l y shown here t h a t t h e growth r a t e i n t h e GaCl -ALE l i e s approx imate ly on t h e t h i s i d e a l growth r a t e l i n e . We have named t h i s growth mode, which has a s e l f l i m i t i n g mechanism over a wide range o f growth c o n d i t i o n s , d i g i t a l e p i t a x y . GaCl p a r b i a l preSsure dependence o f t h e growth r a t e has been i n v e s t i g a t e d i n t h e range o f 10 t o 10 atm, and t h e d i g i t a l e p i t a x y was a l s o conf i rmed i n t h a t exper iment (9 ) . Thus, i n d i g i t a l ep i t axy , growth r a t e can be c o n t r o l l e d s o l e l y by t h e number o f r e p e t i t i o n s o f t h e ALE cyc le , and t h e growth proceeds i n monolayer u n i t s , independent o f analogue parameters as p a r t i a l pressure, growth temperature, and gas exposure t ime. I n MO-ALE, t h e decomposi t ion process o f me ta lo rgan i c compounds must be taken i n t o account. The growth r a t e i s a f u n c t i o n o f t h e growth temperature and p a r t i a l p ressure . As seen i n F i g . 2, t h e r e g i o n hav ing growth o f a d i g i t a l n a t u r e i s g e n e r a l l y n o t w ider t h a n t h a t i n t h e GaC1-ALE. However, i t shou ld be noted t h a t d i g i t a l e p i t a x y was ob ta ined by A. Doi ,e t a l . , over a wide range o f growth c o n d i t i o n s w i t h A r l a s e r i r r a d i a t i o n t o t h e s u b s t r a t e (10) . They exp la ined t h e i r r e s u l t s by say ing t h a t t h e Ga monolayer was formed when t h e A r l a s e r enhanced t h e decomposi t ion o f TMG adsorbed on As atoms o f t h e subs t ra te . K. Mor i , e t al., used diethylgalliumchloride(DEGaC1) f o r t h e GaAs ALE as a new MO source (12) . D i g i t a l e p i t a x y was produced i n t h i s system, as was GaC1-ALE. The DEGaCl system has t h e advantages o f bo th GaC1-ALE and MO-ALE. It i s expected t o be a p p l i e d t o l a r g e d iameter wafer processes i n f u t u r e IC f a b r i c a t i o n . 4. C h a r a c t e r i z a t i o n o f ALE f i l m s A l though t h e e l e c t r i c a l and o p t i c a l p r o p e r t i e s o f GaC1-ALE f i l m s have n o t been s y s t e m a t i c a l l y i n v e s t i g a t e d , q u a l i t a t i v e c h a r a c t e r i s t i c s a r e descr ibed here b r i e f l y . Grown l a y e r s o f GaAs on s e m i i n s u l a t i n g subs t ra tes revea led h i g h r e s i s t i v e c h a r a c t e r i s t i c s . Photoluminescece measurements a t 77 K and 4.2 K showed acceptor r e l a t e d luminescence i s v e r y weak as compared w i t h band edge l u m i ~ e s ~ e n c ~ ~ FurShermore, c a r r i e r c o n c e n t r a t i o n can be c o n t r o l l e d by Se dop ing f rom 10 t o 10 cm , as w i l l be desc r i bed l a t e r . Consequently, i t i s l g s t i m j t e d t h a t t h e background c a r r i e r c o n c e n t r a t i o n f o r GaC1-ALE i s lower t han 10 cm w i t h n t ype conduct ion. I n MO-ALE, as-grown GaAs f i l m s g e n e r a l l y revea l a s t r o n g p t ype conduct ion . The most l i k e l y cand ida te f o r background i m p u r i t y i s t h e carbon f rom t h e MO source gas. J. Nishizawa, 75 a13, have r e p o r t e d t h a t t h e background c a r r i e r c o n c e n t r a t i o n i s g r e a t e r t han 10 cm (p t ype ) i n t h e i r molecu lar l a y e r epi taxy(MLE) i n which TMG and ASH a r e used i n a vacuum chamber (13) . S i m i l a r r e s u l t s have been r e p o r t e d by M. A. ~ i s s h l e r , e t a l . (14) . When TEG i s used i n s t e a d o f TMG, t h e background h o l e c o n c e n t r a t i o n tended t o decrease, p robab l y because o f e a s i e r r e l e a s e o f e t h y l r a d i c a l s f r om t h e source gas. N. Kobayashi, e t a l . , have r e p o r t e d f o r t h e i r f l ow r a t e modul a t i o 4 epi$axy (FME) t h a t conduct ion i s o f n type and t h e e l e c t r o n m o b i l i t y exceeds 4 . 2 ~ 1 0 cm /Vs a t a 500°C growth temperature (8) . I n FME, t h e carbon contaminat ion i s a l s o suppressed by adding a smal l amount o f ASH d u r i n g t h e supp ly o f TEG. K . Mor i has i n v e s t i g a t e d t h e growth temperature depenience o f t h e c a r r i e r c o n c e n t r a t i o n i n DEGaC1-ALF7 (1213 Layers grown a t 450°C had a v e r y h i g h h o l e concen t ra t i on , around 5x10 cm . However, t h e c o n c e n t r a t i o n decreased w i t h i n c r e a s i n g growth temppgaturg, and a t 600 'C, n type l a y e r s w i t h a c a r r i e r c o n c e n t r a t i o n o f 1 . 1 ~ 1 0 cm were obta ined. An i nc rease o f growth temperature would c o n t r i b u t e t o l oosen ing t h e bond s t r e n g t h between t h e Ga and a l k y l r a d i c a l s . 5. S e l e c t i v e growth S e l e c t i v e growth i s now sometimes used f o r c o n t a c t l a y e r f o r m a t i o n i n t h e h i g h speed dev ices and o p t i c a l dev ices . I n t h e n e x t s tage o f t h i s t echno logy ' s development, such techn iques w i l l be impor tan t f o r g rowing a c t i v e l a y e r s i n d e s i r e d reg ions . S e l e c t i v e growth i s u s u a l l y performed on a p a r t i a l l y SiO -masked subs t ra te . A bas i c requ i rement i s t h a t d e p o s i t i o n on t h e SiO must be avo iged f o r t h e dev i ce process. Furthermore, t h e grown th i ckness shoufd be c o n t r o l l e d t o a d e s i r e d th i ckness . S e l e c t i v e growth i n GaC1-ALE o f GaAs has been s t u d i e d u s i n g a masked s u b s t r a t e (91, A t a 450°C growth temperature, i t was found t h a t no extraneous d e p o s i t i o n occur red i n t h e SiO reg ion . T h i s i s p robab l y because t h e GaCl adso rp t i on energy on t h e SiO? i s lower t han t h a t on GaAs, which has 3050 kca l /mol (15,16). We have r e p o r t e d p r e v i o u s l y t h a t growth r a t e enhancement i n t.he s e l e c t i v e growth r e g i o n ( g ) , a v e r y common phenomena w i t h convent iona l VPE methbds, can be avoided u s i n g ALE. However, t h e grown th i ckness p e r ALE c y c l e was n o t p r e c i s e l y equal t o t h e monolayer t h i ckness i n t h e s e l e c t i v e growth reg ion . The f o l l o w i n g exper iment was performed t o i n v e s t i g a t e t h e cause. A GaAs s u b s t r a t e hav ing 200 X 700 um windows was used. A f t e r exposure o f t h e s u b s t r a t e t o a GaCl atmosphere, i t was l e f t i n t h e C5-24 JOURNAL DE PHYSIQUE hydrogen stream f o r some pe r i od . A f t e r t h i s , ASH was s u p p l i e d t o t h e s u b s t r a t e reg ion , and GaAs ALE growth was c a r r i e d ou t . We c?ianged t h e res idence t i m e o f t h e s u b s t r a t e i n t h e hydrogen atmosphere and i n v e s t i g a t e d t h e dependence on i t o f t h e growth r a t e . The r e s u l t s ob ta ined a r e shown i n F i g . 3. When t h e t i m e was l e s s t han 5 seconds, i t was found t h a t t h e growth r a t e was enhanced even f o r ALE growth. One p o s s i b l e reason i s t h a t t h e adsorbed GaCl spec ies on t h e SiO does n o t comp le te l y desorb f r om t h e sur face b e f o r e reach ing t h e a rsen i c spec ies i 6 t h e n e x t step, and i t mig ra tes by su r face d i f f u s i o n i n t o t h e window area d u r i n g t h e p e r i o d o f a r sen i c supply. However, t h i s e f f e c t can be avoided and monolayer growth can be achieved i n ALE s e l e c t i v e growth by l e a v i n g t h e s u b s t r a t e f o r g r e a t e r t han 5 seconds a t t h e GaCl purge s tep. Furthermore, t h e r i d g e , which i s a v e r y h i g h growth r a t e r e g i o n observed i n t h e v i c i n i t y o f t h e window frame i n convent iona l VPE, disappeared i n ALE. I n MO-ALE w i t h A r l ase r b y A. Doi , e t a l . , growth occurs s e l e c t i v e l y a t t h e p o s i t i o n where t h e A r l a s e r i s i r r a d i a t e d (17) . They have r e p o r t e d 1x2 mm e l l i p s e shape growth and emphasized t h a t t h e t h e t o p o f t h e e l l i pse -shape i s v e r y f l a t , a l though t h e l i g h t i n t e n s i t y d i s t r i b u t i o n i s Gaussian. Th i s i s a k i n d o f s e l e c t i v e growth w i t h o u t a mask. I f t h e c ross s e c t i o n o f t h e l i g h t beam were sma l l e r t h a t c u r r e n t l y used, a more p r e c i s e s t r u c t u r e would be grown s e l e c t i v e l y . I n GaC1-ALE, i t would be p o s s i b l e i n t h e f u t u r e t o s e l e c t adso rp t i on s i t e s on t h e s u b s t r a t e w i t h o u t a mask, u s i n g va r i ous beams o f l i g h t , e l e c t r o n s and ions . 6. Atomic-plane Doping Atomic-plane o r d e l t a ( 6 1 dop ing i s conducted f o r t h e conf inement o f dopants t o one atomic p lane two -d imens iona l l y and i s used f o r de l ta -doped FET and modula t ion s t r u c t u r e dev ices (18,19). Th i s techn ique has been s t u d i e d through use o f t h e p resen t ALE techn ique ( 9 ) . Hydrogen se len ide (H Se) was used as a dopant source gas. The growth procedure i S as f o l l o w s : t h e 9 G ~ A $ ALE l a y e r s were f i r s t grown on t h e subs t ra te , f o l l o w e d by t h e GaC1-adsorbed s u b s t r a t e exposure t o H Se i n s t e a d o f t o ASH . On t h e i m p u r i t y plane, 9 GaAs l a y e r s were aga in grown. ~ h e g e processes were repsated a d e s i r e d number o f t imes. We i n v e s t i g a t e d t h e dependence o f i nco rpo ra ted Se q u a n t i t y on growth temperature and H Se p a r t i a l p ressure f o r these sample. These r e s u l t s showed t h a t Se i n c o r p o r a t i B n i nc reased w i t h decreas ing t h e growth temperature, and exper imenta l r e s u l t s i n d i c a t e d t h a t a t around 350°C t h e Ga s u r f ace was e n t i r e l y covered w i t h Se atoms. The c a r r i e r c o n c e n t r a t i o n f o r these samples was measured by t h e van de r Pauw method. I t vgd a-yaximum va lue a t a growth temperature of around 450 ' C and was as h i g h as 10 cm f o r l a y e r s on (100) and (111 )A subs t ra tes . The c a r r i e r c o n c e n t r a t i o n , however, decreased r a p i d l y w i t h f u r t h e r i n c o r p o r a t i o n o f selenium. T h i s behav io r i s n o t y e t f u l l y understood, b u t one p o s s i b l e reason i s t h a t t h e Se i m p u r i t y l e v e l may deepen due t o an i nc rease i n t h e Se-Se bond w i t h i n c r e a s i n g dop ing concen t ra t i on , as has been r e p o r t e d by H. P. Hjalmarson (20) . F i g u r e 4 shows a c a r r i e r c o n c e n t r a t i o n p r o f i l e a long t h e growth d i r e c t i o n . T h i s p r o f i l e was measured w i t h t h e C-V method f r o m a sample wh ich had one i m p u r i t y p lane i n t h e ALE GaAs l a y e r s . Growth temperature was 450°C. A v e r y steep p r o f i l e w i t h 8 nm o f f u l l w i d t h h a l f -maximum(FWHM) was obta ined. A c t i v a t i o n energy f o r t h e d i f f u s i o n and t h e p re -exponen t i a l f a c t o r o f d i f f u s i o n cons tan t Do o f Se i n t h e GaAs a re r e p o r t e d t o be 4.16 eV ap923000 cmz/s, r e s p e c t i v e l y (21) . Using these values, t h e d i f f u i o l e n g t h x ( = ( D t ) D: d i f f u s i o n cons tan t t : t i m e ) i s c a l c u l a t e d t o be 2x10 ' 1 a t 45o0C when t h e t i s 4 hours, which corresponds approx imate ly t o t h e t o t a l g rowth t ime. Accord ing ly , we assume t h a t t h e i m p u r i t y d i f f u s i o n i s n o t r e s p o n s i b l e f o r t h e broadening o f t h e FWHM. Furthermore, we eva lua ted one o f these samples w i t h c ross s e c t i o n t r ansm iss ion e l e c t r o n microscopy. The i m p u r i t y p lanes were c l e a r l y observed w i t h i n a 3 l a y e r f l u c t u a t i o n . Th i s f l u c t u a t i o n i s cons idered t o be r e l a t e d t o s u b s t r a t e su r face roughness because t h e s u b s t r a t e was n o t s p e c i a l l y t r e a t e d f o r making an a t o m i c a l l y f l a t su r face p r i o r t o t h e growth. Consequently, c a r r i e r d i f f u s i o n f r o m t h e i m p u r i t y p lane may determine t h e w i d t h o f t h e above p r o f i l e . 7. Device A p p l i c a t i o n t o de l ta -doped FET It has been r e p o r t e d by K. Ploog and E. F. Shubert. e t a l . t h a t i n t h e i r c a l c u l a t i o n and p r e l i m i n a r y exper imenta l r e s u l t s , a f i e l d e f f e c t t r a n s i s t o r (FET) u s i n g a S -doped l a y e r has r e l a t i v e l y h i g h transconductance (18,19). T h i s can be exp la ined by t h e f a c t t h a t e l e c t r o n s o r i g i n a t i n g i n t h e i m p u r i t y p lane a r e con f i ned t o a v e r y s teep channel around t h e i m p u r i t y p lane and behave as a twodimensional e l e c t r o n gas. These resea rche rs achieved such a s t r u c t u r e b y MBE u s i n g S i as an i m p u r i t y . T h i s dev i ce s t r u c t u r e has been f a b r i c a t e d u s i n g t h e ALE under d i scuss ion here. We f i r s t eva luated de l ta -doped l a y e r s th rough m o b i l i t i e s measured by t h e van de r Pauw method a t 77K. Samples measured have a s t r u c t u r e c o n s i s t i n g o f 35 GaAs l aye rs , 1 dop ing l a y e r , 105 GaAs l a y e r s . Growth temperature was around 450°C. F i g u r e 5 shows t h e r e l a t i o n s h i p between m o b i l i t y and sheet c a r r i e r concen t ra t i on . Data from r e f e r e n c e 18 a re a l s o shown. As seen i n t h i s f i g u r e , d a t a ob ta ined f r o m Se d e l t a doped GaC7-ALE c o i n c i d e w e l l w i t h t hose f rom S i de l ta -doped samples grown b y MBE. T h i s i n d i c a t e s t h a t t h e q u a l i t y o f ALE l a y e r s i s comparable w i t h t h a t o f MBE laye rs . F i g u r e 6 shows t h e FET s t r u c t u r e f a b r i c a t e d here (22 ) . F i r s t , a Fe-doped buffer l a y e r o f 0.8 um was grown a t 530°C on t h e s e m i i n s u l a t i n g GaAs subs t ra te . A f t e r t h e b u f f e r l a y e r was grown, 35 GaAs l aye rs , 1 dop ing l a y e r and 105 GaAs l a y e r s were consecu t i v f$y g2own. Sheet s a r r i e r c o n c e n t r a t i o n and m o b i l i t y a t room temperature were 4x10 cm and 1700 cm /Vs, r e s p e c t i v e l y . On t h e t o p o f t h e sample, AuGe/Ni me ta l s f o r source and d r a i n ohmic c o n t a c t s and A1 metal f o r t h e ga te e l e c t r o d e were evaporated. Gate l e n g t h and ga te w i d t h were 1.0 um and 200 um, r e s p e c t i v e l y . F i g u r e 7 shows t h e c u r r e n t v o l t a g e c h a r a c t e r i s t i c s o f a de l ta -doped deplet ion-mode FET. Th i s FET has e x c e l l e n t p i n c h o f f c h a r a c t e r i s t i c s w i t h v e r y smal l ou tpu t conductance i n t h e s a t u r a t e d reg ion . The e x t r i n s i c t ransconductance was 190 mS/mm. Th i s va lue was kep t n e a r l y cons tan t above t h e p i n c h o f f vo l t age . Th i s shows t h a t e l e c t r o n s a re con f i ned t o t h e V-shaped p o t e n t i a l w e l l by t h e 5 -dop ing s t r u c t u r e . Furthermore, t ransconductance as h i g h as 215 mS/mm was ob ta ined w i t h a ga te l e n g t h o f 0.5 um. If a ga te recess s t r u c t u r e i s adopted, 5-doped FET w i t h t h e p resen t method w i l l o f fe r h i g h e r t ransconductance. As f a r as t h e authors know, bes ides t h e S-doped FET ment ioned above, t h e r e has so f a r been no o t h e r r e p o r t o f dev i ce f a b r i c a t i o n u s i n g ALE. However, N. Kobayashi, e t a l . have r e p o r t e d t h e p o s s i b i L i t y o f dev i ce a p p l i c a t i o n i n a AlGats/G2As 2DEGFET s t r u c t u r e u s i n g FME (8). They ob ta ined 2DEG m o b i l i t y as h i g h as 7x10 cm /Vs a t 6K. It has been r e p o r t e d t h a t t h e 2DEG c h a r a c t e r i s t i c s were main ta ined w i t h o u t any deg rada t i on a t a growth temperature as low as 550°C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nano-optoelectronics Based on Iii-v Semiconductor Quantum Dots

In this talk, I discuss the new physics and device applications provided by self-assembled quantum dots, in particular, with III-V compound semiconductor materials system. The quantum dots are the structures three-dimensionally confined and therefore provide quasi zero-dimensional electron gas system, where novel physics can be studied and improved device performance can be achieved, in particu...

متن کامل

Formation of InGaAs fins by atomic layer epitaxy on InP sidewalls

We describe a fabrication process which forms InGaAs fins with sub 10nm thickness and 180nm height. The process flow requires no semiconductor dry-etch, thereby avoiding surface damage arising from such processes. Instead, InGaAs fins are formed using nanometer controlled atomic layer epitaxial growth, using tertiarybutylarsine, upon InP sidewall which are eventually selectively etched. Such fi...

متن کامل

Atomically precise surface engineering of silicon CCDs for enhanced UV quantum efficiency

Articles you may be interested in Atomic layer deposited high-nanolaminates for silicon surface passivation Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition Appl. Enhancement in the efficiency of light emission from silicon by a thin Al 2 O 3 surface-passivating layer grown by atomic layer deposition at low temperature Enhanced quantum effici...

متن کامل

Molecular beam epitaxy of multilayer structures with GaAs and AlxGal-xAs

As indicated in the opening article of this issue [11 thin epitaxial films of some III-Y semiconductors have properties which are important in high-frequency and optoelectronic applications. Such films can be prepared by conventional growth techniques such as liquid-phase epitaxy (LPE) or vapour-phase epitaxy (YPE). For particular applications it may be advantageous to use metal-organic vapour-...

متن کامل

Island Dynamics and Level Set Methods for Continuum Modeling of Epitaxial Growth

Molecular Beam Epitaxy is a method for growing atomically thin lms of material. During epitaxial growth, atoms are deposited on a surface, where they hop randomly until attaching at the edges of partially completed atomic monolayers. This process has practical application to the fabrication of high speed semiconductor electronic devices. We have formulated a new model for epitaxial growth, the ...

متن کامل

New Paradigms for Cost-Effective III-V Photovoltaic Technology

In this paper, we discuss two new paradigms for enabling costeffective III-V solar cell photovoltaics using (i) our novel layer transfer technology, called controlled spalling and (ii) new solar cell device structures. First, we present the application of the controlled spalling for making high-efficiency thin-film multijunction solar cells. Finally, a novel GaAs heterojunction solar cell struc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016